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Image Compression 

Image from Kodak dataset

764x512 764x512x3 bytes

= 1.1MB!

(Uncompressed)




Image from Kodak dataset

764x512 Uncompressed -> 1.1MB

JPEG -> 27KB (~40x!)

 

Image Compression -> JPEG 40x



Image from Kodak dataset

764x512 Uncompressed -> 1.1MB

JPEG -> 14KB (~80x!)

 

Image Compression -> JPEG 80x



Image from Kodak dataset

764x512 Uncompressed -> 1.1MB

JPEG -> 8KB (~137x!)

 

Image Compression -> JPEG 137x



Image from Kodak dataset
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Image Compression -> BPG



HiFiC -> ML-based image compression

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB

BPG -> 8KB (~137x!)

 



Lossy Compression

- Incredible performance gains! ~40x-137x gains without much noticeable 
difference (depending upon the codec)


- So ubiquitous, my DSLR camera does JPEG compression by default :-| .. 
(difficult to find a “dataset” of non-compressed images)


- JPEG, JPEG2000, BPG (HEIC), AVIF, JPEG-XL, ML-based image 
compressors … 



Exploiting Spatial correlation in the data

AllAll

Key Idea -> We need to somehow exploit/remove the correlation between 
neighboring pixels. 
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TRANSFORM CODING!




Transform Coding -> RECAP

AllAll



Block Transform Coding

AllAll



Linear Transform Coding

AllAll



Block Transform Coding
Step 1 -> Cut the image into blocks (eg 8x8), [grayscale]

  X



KLT -> Transform Coding
Step 1 -> Cut the image into blocks X(eg 8x8) 
Step 2 -> Find the transform matrix A 
 using Karhunen-Loeve Transform (KLT)

  
 

 



KLT -> Transform Coding

- Decorrelation by design: Decorrelated transform coefficients 

- Depends upon the data: Transform depends upon the input image


- Slow: Non-structured matrix of size NxN = 64x64, matrix multiplication 
is N^2 (too slow :(), KLT construction is also slow


Q: Can we design a structured transform, which is close to optimal?  
   (i.e. to the KLT matrix)




Transform Coding -> 1D-DCT

- 1D-> Discrete Cosine transform 
 = values of the cosine function at different quantized values


- Forms the basis of any input of size 5

- The DCT vectors are orthonormal

 



Transform Coding -> 1D-DCT



Transform Coding -> 1D-DCT- examples



Transform Coding -> 1D-DCT- examples



Transform Coding -> 2D-DCT

2D-DCT basis vectors 
(apply 1D along x, and then y) 

 



Transform Coding -> 2D-DCT



Transform Coding -> 2D-DCT vectors

2D-DCT basis vectors for 8x8 blocks 

 



Transform Coding -> DCT



Transform Coding -> DCT



Transform Coding -> DCT



Transform Coding -> DCT

DCT -> Sparse

 



Transform Coding -> DCT

DCT -> Sparse

 



Transform Coding -> DCT

DCT -> Sparse (but higher frequencies)

 



Transform Coding -> DCT of noise

DCT -> Not-so sparse

 



Transform Coding -> DCT
- Observation: For most of the “natural” image blocks, the DCT is sparse,  

and concentrated in the lower frequencies 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Transform Coding -> DCT

- Observation: For most of the “natural” image blocks, the DCT is sparse, and 
concentrated in the lower frequencies 

- Energy Compaction: Most of the high-frequency DCT coefficients have low 
magnitude, so can be ignored during lossy-compression (i.e. perform low-
pass filtering)  


This key observation forms the basis of JPEG image compression



JPEG Image Compression



JPEG Image Compression

Optional color transform 
  + color sub-sampling



RGB colorspace



YCbCr Color space



JPEG Image Compression
Optional color transform 
  + color sub-sampling



JPEG Image Compression (Baseline Encoding)

Optional color transform 
  + color sub-sampling



JPEG Image Compression

Encoding done per channel 
(independently)



JPEG Image Compression -> 2D-Block DCT
- STEP-1: Cut the image into blocks of size 8x8


Input 8x8 block  



Transform Coding -> DCT
- STEP-1: Cut the image into blocks of size 8x8

- STEP-1.5: subtract 128, to center the pixels

- STEP-2: 2D-DCT of each 8x8 block


Input 8x8 block  
(zero centered)

2D DCT



Transform Coding -> DCT

1D DCT (along x)Input 8x8 block  
(zero centered)



Transform Coding -> DCT

2D DCT

Input 8x8 block  
(zero centered)



Transform Coding -> DCT
- STEP-1: Cut the image into blocks of size 8x8

- STEP-1.5: subtract 128, to center the pixels

- STEP-2: 2D-DCT of each 8x8 block


Input 8x8 block  
(zero centered)

2D DCT



Transform Coding -> DCT
- STEP-1: Cut the image into blocks of size 8x8

- STEP-1.5: subtract 128, to center the pixels

- STEP-2: 2D-DCT of each 8x8 block


2D DCT
2D basis vectors



JPEG Image Compression

Efficient separable 
DCT implementation



JPEG Image Compression -> Quantization

2D-DCT Quantized-DCT 
coefficients

- STEP-1: Cut the image into blocks of size 8x8

- STEP-2: 2D-DCT of each 8x8 block

-  STEP-3: uniform scalar quantize DCT coefficients based on the quantization table. 
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JPEG Image Compression -> Quantization



JPEG Image Compression

Different quantization tables

For different compression rate 



JPEG Image Compression

Quantized, transformed

Coefficients for one 8x8

block

Q: How would you go ahead with 
lossless compression of these coefficients? 




JPEG Image Compression

Quantized, transformed

Coefficients for one 8x8

block

Run-length + Huffman



JPEG Image Compression -> Entropy coding



JPEG Compression: 

- Color Channels: For Each color channel is encoded independently 
of each other 

- Block Coding: JPEG encodes each 8x8 almost independently 
(except the DC coefficient).  
 


- Huffman/Arithmetic: JPEG also has support for using Arithmetic 
coding, but is rarely used. 



Linear Transform Coding

AllAll



Image Compression -> Analysis



JPEG Decoder specification

AllAll



JPEG Decoder specification

AllAll



What are the issues with JPEG?

- Block size 8x8
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- Blocks processed independently 



What are the issues with JPEG?

- Block size 8x8 

- Blocks processed independently 

- lossless coding can be improved



Image from Kodak dataset

764x512 Uncompressed -> 1.1MB

JPEG -> 8KB (~137x!)

 

Image Compression -> JPEG 137x



Image from Kodak dataset

764x512 Uncompressed -> 1.1MB

BPG -> 8KB (~137x!)

 

Image Compression -> BPG



BPG/H.265-Iframe Larger blocks are allowed 
(64x64), (32x32)




BPG/H.265-Iframe



BPG/H.265-Iframe
Larger blocks are allowed 
(64x64), (32x32)




BPG/H.265-Iframe
Larger blocks are allowed



Predictive coding -> BPG/H.265

(2
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Predict next block, based  
on previously encoded blocks




BPG Prediction modes

Prediction Modes to try


• DC Mode


- For simplicity (and 
speed) you only use 
the border pixels of 
the encoded blocks 
to predict the next 
block. 
 


- Try multiple models, 
and use whichever 
works best  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BPG Predictive coding
Blocks are not independent anymore! 
Predictive coding
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BPG Predictive coding
Blocks are not independent anymore! 
Predictive coding




BPG

- Exploits correlation between blocks: Predictive coding 

- Use larger transform blocks: Better energy compaction, better 
compression


  -    CABAC instead of Huffman: Adaptive Arithmetic coding instead of 

Huffman.



BPG -> CABAC



Image from Kodak dataset

764x512 Uncompressed -> 1.1MB

JPEG -> 8KB (~137x!)

 

Image Compression -> JPEG 137x



Image from Kodak dataset

764x512 Uncompressed -> 1.1MB

BPG -> 8KB (~137x!)

 

Image Compression -> BPG



What next? 

- Beyond Linear transform: JPEG/JPEG2000/BPG all use variants of 
DCT, DWT etc. can we obtain better performance with non-linear 
transforms


- End-to-End RD Optimization: JPEG the R-D optimization is not 
accurate. Rate needs to be shared between different channels etc. 
Can we make that end-to-end? 

https://wave-one.github.io/iframe_comparisons/



Questions?


