
Image Compression
EE274, Fall22

Image Compression

Image from Kodak dataset

764x512 764x512x3 bytes

= 1.1MB!

(Uncompressed)

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB

JPEG -> 27KB (~40x!)

 

Image Compression -> JPEG 40x

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB

JPEG -> 14KB (~80x!)

 

Image Compression -> JPEG 80x

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB

JPEG -> 8KB (~137x!)

 

Image Compression -> JPEG 137x

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB

BPG -> 8KB (~137x!)

 

Image Compression -> BPG

HiFiC -> ML-based image compression

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB

BPG -> 8KB (~137x!)

 

Lossy Compression

- Incredible performance gains! ~40x-137x gains without much noticeable
difference (depending upon the codec)

- So ubiquitous, my DSLR camera does JPEG compression by default :-| ..
(difficult to find a “dataset” of non-compressed images)

- JPEG, JPEG2000, BPG (HEIC), AVIF, JPEG-XL, ML-based image
compressors …

Exploiting Spatial correlation in the data

AllAll

Key Idea -> We need to somehow exploit/remove the correlation between
neighboring pixels.

Exploiting Spatial correlation in the data

AllAll

Key Idea -> We need to somehow exploit/remove the correlation between
neighboring pixels.

TRANSFORM CODING!

Transform Coding -> RECAP

AllAll

Block Transform Coding

AllAll

Linear Transform Coding

AllAll

Block Transform Coding
Step 1 -> Cut the image into blocks (eg 8x8), [grayscale]

  X

KLT -> Transform Coding
Step 1 -> Cut the image into blocks X(eg 8x8) 
Step 2 -> Find the transform matrix A 
 using Karhunen-Loeve Transform (KLT)

  

 

KLT -> Transform Coding

- Decorrelation by design: Decorrelated transform coefficients 

- Depends upon the data: Transform depends upon the input image

- Slow: Non-structured matrix of size NxN = 64x64, matrix multiplication
is N^2 (too slow :(), KLT construction is also slow

Q: Can we design a structured transform, which is close to optimal?  
 (i.e. to the KLT matrix)

Transform Coding -> 1D-DCT

- 1D-> Discrete Cosine transform 
 = values of the cosine function at different quantized values

- Forms the basis of any input of size 5

- The DCT vectors are orthonormal

 

Transform Coding -> 1D-DCT

Transform Coding -> 1D-DCT- examples

Transform Coding -> 1D-DCT- examples

Transform Coding -> 2D-DCT

2D-DCT basis vectors 
(apply 1D along x, and then y)

 

Transform Coding -> 2D-DCT

Transform Coding -> 2D-DCT vectors

2D-DCT basis vectors for 8x8 blocks 

 

Transform Coding -> DCT

Transform Coding -> DCT

Transform Coding -> DCT

Transform Coding -> DCT

DCT -> Sparse

 

Transform Coding -> DCT

DCT -> Sparse

 

Transform Coding -> DCT

DCT -> Sparse (but higher frequencies)

 

Transform Coding -> DCT of noise

DCT -> Not-so sparse

 

Transform Coding -> DCT
- Observation: For most of the “natural” image blocks, the DCT is sparse,  

and concentrated in the lower frequencies 

Transform Coding -> DCT
- Observation: For most of the “natural” image blocks, the DCT is sparse,  

and concentrated in the lower frequencies 

Transform Coding -> DCT
- Observation: For most of the “natural” image blocks, the DCT is sparse,  

and concentrated in the lower frequencies 

Transform Coding -> DCT

- Observation: For most of the “natural” image blocks, the DCT is sparse, and
concentrated in the lower frequencies 

- Energy Compaction: Most of the high-frequency DCT coefficients have low
magnitude, so can be ignored during lossy-compression (i.e. perform low-
pass filtering)

This key observation forms the basis of JPEG image compression

JPEG Image Compression

JPEG Image Compression

Optional color transform 
 + color sub-sampling

RGB colorspace

YCbCr Color space

JPEG Image Compression
Optional color transform 
 + color sub-sampling

JPEG Image Compression (Baseline Encoding)

Optional color transform 
 + color sub-sampling

JPEG Image Compression

Encoding done per channel 
(independently)

JPEG Image Compression -> 2D-Block DCT
- STEP-1: Cut the image into blocks of size 8x8

Input 8x8 block  

Transform Coding -> DCT
- STEP-1: Cut the image into blocks of size 8x8

- STEP-1.5: subtract 128, to center the pixels

- STEP-2: 2D-DCT of each 8x8 block

Input 8x8 block  
(zero centered)

2D DCT

Transform Coding -> DCT

1D DCT (along x)Input 8x8 block  
(zero centered)

Transform Coding -> DCT

2D DCT

Input 8x8 block  
(zero centered)

Transform Coding -> DCT
- STEP-1: Cut the image into blocks of size 8x8

- STEP-1.5: subtract 128, to center the pixels

- STEP-2: 2D-DCT of each 8x8 block

Input 8x8 block  
(zero centered)

2D DCT

Transform Coding -> DCT
- STEP-1: Cut the image into blocks of size 8x8

- STEP-1.5: subtract 128, to center the pixels

- STEP-2: 2D-DCT of each 8x8 block

2D DCT
2D basis vectors

JPEG Image Compression

Efficient separable 
DCT implementation

JPEG Image Compression -> Quantization

2D-DCT Quantized-DCT 
coefficients

- STEP-1: Cut the image into blocks of size 8x8

- STEP-2: 2D-DCT of each 8x8 block

- STEP-3: uniform scalar quantize DCT coefficients based on the quantization table.

JPEG Image Compression -> Quantization

2D-DCT Quantized-DCT 
coefficients

- STEP-1: Cut the image into blocks of size 8x8

- STEP-2: 2D-DCT of each 8x8 block

- STEP-3: uniform scalar quantize DCT coefficients based on the quantization table.

JPEG Image Compression -> Quantization

JPEG Image Compression

Different quantization tables

For different compression rate 

JPEG Image Compression

Quantized, transformed

Coefficients for one 8x8

block

Q: How would you go ahead with 
lossless compression of these coefficients?

JPEG Image Compression

Quantized, transformed

Coefficients for one 8x8

block

Run-length + Huffman

JPEG Image Compression -> Entropy coding

JPEG Compression:

- Color Channels: For Each color channel is encoded independently
of each other 

- Block Coding: JPEG encodes each 8x8 almost independently
(except the DC coefficient).  

- Huffman/Arithmetic: JPEG also has support for using Arithmetic
coding, but is rarely used. 

Linear Transform Coding

AllAll

Image Compression -> Analysis

JPEG Decoder specification

AllAll

JPEG Decoder specification

AllAll

What are the issues with JPEG?

- Block size 8x8

What are the issues with JPEG?

- Block size 8x8 

- Blocks processed independently 

What are the issues with JPEG?

- Block size 8x8 

- Blocks processed independently 

- lossless coding can be improved

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB

JPEG -> 8KB (~137x!)

 

Image Compression -> JPEG 137x

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB

BPG -> 8KB (~137x!)

 

Image Compression -> BPG

BPG/H.265-Iframe Larger blocks are allowed 
(64x64), (32x32)

BPG/H.265-Iframe

BPG/H.265-Iframe
Larger blocks are allowed 
(64x64), (32x32)

BPG/H.265-Iframe
Larger blocks are allowed

Predictive coding -> BPG/H.265

(2

(2
(2

(2

(2

(2

Predictive coding -> BPG/H.265

(2

(2
(2

(2

(2

(2

Predict next block, based  
on previously encoded blocks

BPG Prediction modes

Prediction Modes to try

• DC Mode

- For simplicity (and
speed) you only use
the border pixels of
the encoded blocks
to predict the next
block. 

- Try multiple models,
and use whichever
works best  

BPG Prediction modes

Prediction Modes to try

• DC Mode

- For simplicity (and
speed) you only use
the border pixels of
the encoded blocks
to predict the next
block. 

- Try multiple models,
and use whichever
works best  

BPG Predictive coding
Blocks are not independent anymore! 
Predictive coding

BPG Predictive coding
Blocks are not independent anymore! 
Predictive coding

BPG Predictive coding
Blocks are not independent anymore! 
Predictive coding

BPG

- Exploits correlation between blocks: Predictive coding 

- Use larger transform blocks: Better energy compaction, better
compression

 - CABAC instead of Huffman: Adaptive Arithmetic coding instead of

Huffman.

BPG -> CABAC

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB

JPEG -> 8KB (~137x!)

 

Image Compression -> JPEG 137x

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB

BPG -> 8KB (~137x!)

 

Image Compression -> BPG

What next?

- Beyond Linear transform: JPEG/JPEG2000/BPG all use variants of
DCT, DWT etc. can we obtain better performance with non-linear
transforms

- End-to-End RD Optimization: JPEG the R-D optimization is not
accurate. Rate needs to be shared between different channels etc.
Can we make that end-to-end?

https://wave-one.github.io/iframe_comparisons/

Questions?

